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This paper investigates the MIMO radar orthogonal waveform design problem. The result shows the ambiguity function (AF) 

property of the sum of transmitted signals is as important as the autocorrelation and crosscorrelation properties of 

transmitted signals. An orthogonal zero correlation zone (ZCZ) phase codes design method was proposed to simultaneously 

satisfy these property requirements. The idea is to simultaneously constrain the peak sidelobe of the AF of sum signal in ZCZ, 

and the peak sidelobe of aperiodic autocorrelation function (ACF) and peak of the aperiodic crosscorrelation function (CF) 

within ZCZ. We used the sequential quadratic programming (SQP) method to solve the nonlinear optimization problem with 

multi-variables and multi-constraints. Some of the designed results are presented, and their properties are improved 

significantly. The designed orthogonal ZCZ codes promise to be practically applicable. 
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1. Introduction 

 

Recently, multiple-input multiple-output (MIMO) 

radar has received more and more attention [1-6]. The 

waveform design problem is fundamental important for 

MIMO radar system. So far the optimal orthogonal phase 

codes for MIMO radar are the ones whose both peak 

sidelobe of the aperiodic autocorrelation function (ACF) 

and peak of the aperiodic crosscorrelation function (CF) 

are the minimum possible for a given code length, and 

have a minimum Doppler loss for a moving target. 

Therefore, in considerable literature on the design of 

MIMO radar orthogonal phase codes set, attention is only 

paid to the autocorrelation and crosscorrelation properties 

[16] and Doppler tolerance of the designed codes. As 

noted by prior authors, low autocorrelation and Doppler 

loss are critical because they facilitate high range 

resolution, and low cross-correlation levels are important 

for reducing mutual interference as well as maximizing 

independent information.   

However, we argue that an additional metric is needed 

to achieve good performance for MIMO radar system. The 

additional metric is the property of ambiguity function (AF) 

of the sum of transmitted signals. It is known that MIMO 

radar employs multiple transmitting antennas to 

simultaneously transmit orthogonal probing signals and 

also uses multiple receiving antennas to receive the 

reflected signals from the targets. The orthogonal signals 

arriving from different transmitting antenna can be 

separated by match-filtered processing and then be 

performed the equivalent transmit beamforming on the 

receive side “after the fact”. At the analysis stage, we 

presented the AF of the sum signal is equivalent to the 

equivalent transmit beamforming result of the signal 

component. Thus, low peak sidelobe level of the sum 

signal’s AF has become of increasing importance in the 

MIMO radar system design. Numerical examples of 

Section IV show the signals with low autocorrelation 

sidelobe level and low crosscorrelation level still might 

have poor AF sidelobe level of sum signal. Therefore, the 

property of AF of sum signal needs to be accounted for the 

orthogonal waveforms design of MIMO radar. 

On the other hand, orthogonal codes set with low 

correlation level are needed only over a narrow window 

around the origin in some applications such as in the 

situation where the target distributions are sparse. A 

sequences set with the property that the autocorrelation 

sidelobe and crosscorrelation all vanish in a specified zone 

is referred to a zero correlation zone (ZCZ) sequences set. 

The ZCZ of this paper refers to very-low-correlation zone, 

that is, the correlation of ZCZ codes within the specified 

zone is very low, but not zero. This paper introduced an 

approach to orthogonal ZCZ phase codes design which can 

simultaneously satisfy all of these requirements. The idea 

is to simultaneously constrain the peak sidelobe of the AF 

of the sum of transmitted signals within the ZCZ, and the 

peak sidelobe of aperiodic autocorrelation function and 

peak of the aperiodic crosscorrelation function over the 
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ZCZ. To solve the nonlinear multi-variables, 

multi-constraints optimization problem, the sequential 

quadratic programming (SQP) method is used. Note that 

the designed result is continuous by SQP. We performed 

an additional design step which quantifies the continuous 

phase codes to get the discrete polyphase codes set which 

promises to be practically applicable. Some of the 

designed results are presented, and their properties are 

improved significantly.  

The rest of this paper is organized as follows. Section 

II introduces the signal model and formulates the problem. 

In Section III the SQP method for orthogonal ZCZ codes 

set design is described. In Section IV the design results are 

presented. In Section V some conclusions are drawn. 

 

 

2. Problem formulation 

 

Consider a narrowband MIMO radar system with M 

transmitters and N receivers. We assume the two antenna 

arrays to be linear and parallel. The transmitter and the 

receiver are close enough that they share the same angle 

variable. Each array is composed of omnidirectional 

elements. The pulse of duration 
pT  is divided into L 

subpulses of identical duration. The phase coded 

waveform transmitted by the mth antenna can be expressed 

as 
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and ( )m l  is the phase of the lth subpluse of the mth 

transmitted signal, which only can be selected from the 

phase codes set of P phase 
2 2 2
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We assume a point target is located in the far field. 

Owing to the receiving array aperture is unrelated to the 

problem addressed here (because the phase differences in 

the reflected signalscaused by the differences of the 

receiving antenna locations can be compensated by 

conventional receive beamforming), hence we only 

consider the scenario where only one receiving antenna is 

used to receive the reflected signal (namely N=1 for 

simplicity). Thus, the demodulated received signal can be 

expressed as  
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where   is wavelength, d is the spacing of the 

transmitting antennas, 
df is Doppler shift associated with 

target, 
t  is target direction,  is the propagation delay, 

t  is the corresponding path loss including the two-way 

propagation loss and the reflection coefficient, which is in 

general a complex number. The first term in (3) represents 

the signal reflected by the target. The second term is white 

noise. We assume that there is no antenna array 

misalignment. Throughout this paper we shall assume that 

2d  . To simplify (3), we let 1t  , 0  , and let  
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Then (3) can be rewrite as  
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After being received, the echo signals can be 

performed to pass through a bank of matched filters, which 

is the conjugated time-reversed version of the transmit 

signals. Then the output of matched filter ( )m tq

（ ( ) ( )m mt t q s , where *( )  indicates Hermitian 

conjugate）can be written as 
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After matched filtering, the mth row of the matrix 

1 2( , ) [ ( , ), ( , ), , ( , )]T T T T

d d d M dt f t f t f t fy y y y  represents 

the mth channel of data, where T is the transpose operator. 

It is thus possible to linearly combine these channels, 

namely equivalent transmit beamforming. The weight 

vector of equivalent transmitting beamformer can be 

written in the form 
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where ( )tn is the white noise after both matched filter 
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processing and equivalent transmit beamforming. Note 

that the second term in (7) is the AF of ( )s tx : 

 

2 2 ( )
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From (4) we can see that ( )s tx  is the weigthed sum 

of transmitted signals. To simplify the analysis, we focus 

here on the scenario where 0t  . The problem under 

the condition of any target direction will be explored in the 

future. Thus ( )s tx  represents the sum signal of 

transmitted signals. Equation (7) and equation (8) imply 

that the AF of the sum signal is equivalent to the 

equivalent transmit beamforming result of signal 

component. Thus, the low peak sidelobe of the sum 

signal’s AF property has become of increasing importance 

in the design of the MIMO radars. However, the codes set 

with good autocorrelation and crosscorrelation properties 

doesn’t guarantee whose sum signal still have good AF 

property, which will be shown in the simulation result of 

Section IV. Therefore, we need to add the AF property of 

sum signal which is equally important with ACF and CF 

properties to evaluate the performance of designed 

waveforms.  

 

 

3. Waveform design 

 

In some applications, orthogonal codes set with low 

correlations are needed only over a narrow window around 

the origin such as in the situation where the target 

distributions are sparse. The ZCZ of this paper refers to 

very-low-correlation zone, that is, the correlation of ZCZ 

codes within the specified zone is very low, but not zero. 

To describe conveniently, we first define the ZCZ. We 

assume 2K（ 1K L  ）range bins around the origin are 

ZCZ, which implies the correlation level of 

[ , 1] [1, ]K K   range bins should be very low; we also 

assume ( , )D DF F  Doppler bins are ZCZ.  This Doppler 

range is divided to 2 1D  Doppler bins by Doppler 

resolution.  It is sufficient to study the first quadrant of 

the AF according to the symmetry property of AF. Thus 

only the K D range-Doppler ZCZ needs to optimize, 

namely corresponding range bins set is [1, ]K , and 

corresponding Doppler bins set is [0, 1]D .These 

Doppler shifts corresponding to Doppler bins are 

0.5d pf d T for 0,1,2, , 1d D  . 

To describe conveniently, we define the following 

aperiodic ACF and aperiodic CF of transmitted signals for 

MIMO radar. 
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The AF of sum signal in (8) can be written as the 

following discrete form： 
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Therefore, the goal of this section is to design the 

orthogonal ZCZ codes set which can simultaneously 

satisfy the requirements of ACF, CF and the AF of sum 

properties, by minimize the following three figures of 

merit:  

 peak sidelobe of aperiodic autocorrelation in 

ZCZ, that is, ( , )m kA  for 

, and 0; 1,2, ,k K K k m M    ; 

   aperiodic crosscorrelation of transmitted 

signals within ZCZ, that is, ( , , )p q k C  for 

, ; , 1,2, ,k K K p q M   ; 

 the AF peak sidelobe of sum signal over ZCZ, 

that is, 
2

( , )dk f for 

1,2, ; 0.5 ; 0,1, , 1d pk K f d T d D    . 

Consequently, the objective function can be given as 

follows:  
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where Φ is the size-LM phase vector, the value of each 

element of Φ is 0 to 2 (not including 2 ); 

, , 0
1, ,

max ( , )m
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m M
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A  represents the peak sidelobe of the 
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aperiodic ACF of transmitted signals within ZCZ, 

,
, 1, ,

max ( , , )p q
k K K
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C  is the peak of the aperiodic CF of 

transmitted signals within ZCZ, 
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peak of the AF of sum signal over ZCZ of range-Doppler 

plane,  
1  and 

2  are the weighting parameters which 

characterizes the importance of the crosscorrelation 

property and the AF of sum signal in the optimization 

process, typically, 
1 2 1   . The optimization problem 

in (12) can be changed into the following nonlinear 

optimization problem with multi-variables and 

multi-constraints.  
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where z  is both the instrumental variable used for 

constraint and the objective function. Equation (13) first 

constrain the aperiodic ACF and aperiodic CF within ZCZ 

and the AF of sum signal over ZCZ and let each of 

constraints be less than or equal to the instrumental 

variable z , and then minimize z . These constraints 

make amplitude of both the autocorrelation sidelobe and 

crosscorrelation in ZCZ and the sidelobe of the AF in ZCZ 

distribute even, and then minimize instrumental variable z , 

which means simultaneously minimize the 

even-distributed autocorrelation sidelobe and 

crosscorrelation within ZCZ and the sidelobe of the AF 

within ZCZ in range-Doppler plane. The design 

requirements can be satisfied by this optimization means.   

The nonlinear optimization problem with 

multi-variables and multi-constraints in (13) can be solved 

by Sequential Quadratic Programming (SQP) method. As 

with most optimization methods, SQP has arguably 

become the most successful method for solving 

nonlinearly constrained optimization problems. SQP is an 

iterative method for nonlinear optimization, which solve a 

sequence of optimization subproblems, each of which 

optimizes a quadratic model of the objective subject to a 

linearization of the constraints. If the objective function 

and the constraints are twice continuously differentiable, 

SQP methods can be used to solve the problem. The SQP 

methods have been implemented in the package of 

MATALB.  

We assume the initial phase vector and the 

optimization result vector are denoted as 
0Φ  and 

optΦ , 

respectively , both of which are continuous phase vector. It 

should be noted that the initialization problem of phase 

vector, i.e., each element of 
0Φ  must have a 

[0,2 ) uniformly distribution. 

To apply the technique into practice, the designed 

continuous phase codes still need to quantify to discrete 

phase codes. According to the number of phase available P 

decided by the transmitter, the discrete orthogonal ZCZ 

codes can be obtained through the following quantify 

operator:    

2
2opt opt P

P


   Φ Φ           (14) 

where     represents a “floor” rounding operation. 

 

4. Numerical results 

 

Based on the method described in Section III, the 

phase coded waveforms set has been designed. Table I lists 

the designed polyphase codes set with L=128, M=3 and 

P=128. The other parameters include: the pulse duration 

25.6pT s  and wavelength 0.25m  . Select 40 range 

bins adjacent to the origin (namely 20K  ) and the 

Doppler shifts set 2 ,2p pT T    are selected as the ZCZ. 

The Doppler shifts set correspond to the target radial 

velocity range  9765 ,9765m s m s . The positive 

Doppler range of 0,2 pT    is divided into 5D   

Doppler bins by the velocity resolution 0.5 pT . 

Let 1 2 1   . Resolve the optimization problem in (13) 

by using the SQP method to get continuous phase codes 

set. We assume the number of phase available provided by 

transmitter is 128 (P=128). Then we used (14) to quantify 

them and finally obtained the orthogonal 128-phase codes 

which possess low correlation within specified correlation 

zone.  
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Table 1. Phase sequences of a designed ZCZ polyphase code set with L=128, M=3, and P=128. 

 

No. Phase sequences 

Sequence 1 127,61,73,127,117,124,79,31,68,127,0,0,64,43,0,98,85,13,63,43,127,89,61,0,88,81,117,

127,28,85,127,17,108,109,6,1,55,93,26,48,46,3,30,89,70,9,95,11,47,99,37,86,79,103,77,

20,25,53,121,43,15,74,78,122,118,111,50,79,0,14,59,15,98,48,21,58,51,0,14,0,0,68,59,4

0,118,35,8,76,112,40,11,17,21,118,41,0,127,100,59,123,101,94,66,38,29,84,35,68,70,58

,67,39,52,70,127,48,10,28,114,55,105,17,40,76,41,70,58,62 

Sequence 2 100,55,12,92,68,76,56,10,104,127,115,101,18,54,88,98,127,19,127,74,74,23,73,78,0,58,

83,87,69,93,32,116,100,81,105,61,68,8,54,104,81,90,106,30,120,69,74,32,39,118,57,5,8

3,102,86,31,43,6,38,47,18,116,28,61,127,125,7,62,112,12,91,122,85,11,60,126,86,69,82

,37,103,118,88,15,61,44,121,1,64,127,0,108,102,116,28,51,40,44,50,0,52,80,0,56,73,10

0,97,70,9,107,50,44,79,113,127,98,52,82,55,0,62,66,85,83,90,11,111,28 

Sequence 3 67,3,57,90,33,71,98,2,0,14,98,0,75,63,84,82,65,34,88,109,68,21,47,0,48,41,15,74,53,86,

28,99,1,127,100,122,0,127,97,81,64,30,114,20,67,81,125,83,116,1,69,44,0,69,57,125,58

,27,114,98,60,0,93,102,0,0,127,63,13,4,21,126,44,39,74,6,124,0,36,83,72,54,72,121,46,

21,34,57,4,104,74,28,63,0,108,21,50,78,86,48,0,60,0,127,14,127,82,127,79,19,12,119,1

22,34,59,12,99,33,93,38,0,34,81,10,26,92,85,94 

 

 

The ACFs of the polyphase Sequence 1, Sequence 2, 

and Sequence 3 of the ZCZ codes set are shown in the first 

row of Fig. 1, respectively. The CFs between Sequence 1 

and Sequence 2, Sequence 1 and Sequence 3, and 

Sequence 2 and Sequence 3 are shown in the second row 

of Fig. 1, respectively. And the Fig. 2 is a larger version of 

Fig.1 in ZCZ. 

 

 

Fig. 1. The ACF and CF of polyphase sequences set designed.  

 

Fig. 2. A larger version of Fig.1 in ZCZ. 

 

 

In Fig. 1 and Fig. 2, the solid black line depicts the 

autocorrelation and crosscorrelation of the sequences 

designed by the proposed method based on SQP method; 

the dashed blue line, in contrast, depicts the 

autocorrelation and crosscorrelation of designed results in 

Ref. [8] which used genetic algorithm (GA).  

The autocorrelation peak sidelobe level (APSL) and 

crosscorrelation peak (CP) achieved by the proposed 

method in the ZCZ are -28.1dB and -28.2dB, respectively. 

While under the same simulation condition (the same M 

and L), GA used in Ref. [8] yielded ZCZ codes set with 

both of APSL and CP being 0.1154( 18.75dB ). By 

comparing them, we can find that the APSL and CP of the 

designed ZCZ polyphase codes set in this paper 

outperform the results of Ref. [8] approximately 9.4dB. 
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It’s important to note that the four phase coded set 

obtained by GA in Ref. [8] will not change much as the 

number of phase available P increases [12].   

The simulation results of the signals after matched 

filter processing and equivalent transmit beamforming are 

provided as follows. The AF of the sum of transmitted 

waveforms designed by the proposed method is shown in 

Fig. 3. The AF of sum signal designed by Ref. [8], in 

contrast, is shown in Fig. 4. 

 

 

 

a) The AF of sum signal               b) front view            c) top view 

 

Fig. 3. The AF of the sum of transmit waveforms set designed by the proposed algorithm in this paper. 

 

 

a) The AF of sum signal               b) front view            c) top view 

 

Fig. 4. The AF of the sum of transmit waveform sets designed by Ref. [8]. 

 

In Fig. 3, the peak sidelobe of the AF of sum signal in 

ZCZ is -34.84dB; while the peak sidelobe of the AF of 

sum signal in same zone is -15.83dB. Comparing the Fig. 

3 and Fig. 4, it can be seen that the peak sidelobe of the AF 

achieved by the proposed algorithm outperforms the 

algorithm in Ref. [8] 19dB. From Fig. 4, it also can be 

seen that only optimizing the autocorrelation and 

crosscorrelation properties cannot guarantee the good 

result after matched filter processing and equivalent 

transmit beamforming. Actually, the peak sidelobe of the 

AF of sum signal gets worse 2.92dB than its APSL and CP. 

Therefore, it is necessary to simultaneously optimize the 

properties of autocorrelation, crosscorrelation and the AF 

of sum signal. 
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5. Conclusions 

 

To date, the theoretical literature on MIMO radar has 

focused largely on the use of orthogonal waveforms. These 

orthogonal waveforms always are separated by matched 

filter processing on the receiver and linearly combined by 

equivalent transmit beamforming “after the fact”. Through 

the analysis in Section II, we find that the AF of the sum of 

the transmitted waveforms is equivalent to the equivalent 

transmit beamforming result of signal component. 

Therefore, the peak sidelobe level of the AF of sum signal 

is equally important as ACF and CF properties. On the 

other hand, orthogonal waveforms set with low 

correlations are needed only over a narrow zone in some 

application. Thus, this paper proposed an orthogonal ZCZ 

phase codes design method to simultaneously satisfy these 

performance requirements. The idea is to simultaneously 

constrain the peak sidelobe of the AF of sum signal in 

ZCZ, and the peak sidelobe of aperiodic ACF and peak of 

the aperiodic CF within ZCZ. To satisfy all of these 

requirements, an efficient sequential quadratic 

programming (SQP) method is used to design the desired 

waveforms set. Note that the obtained phase codes are 

continuous. Therefore we performed an additional design 

step which quantifies the continuous phase codes to get the 

discrete polyphase codes set which promises to be 

practically applicable. Future research might concern the 

effect of target direction to orthogonal ZCZ codes set 

design.  

 

 

Acknowledgment 

 

This work is supported by the National Natural 

Science Foundation of China (No. 61032010 and No. 

61201280) and NSAF 11076006. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

References 

 

 [1] E. Fishler, A. Haimovich, R. Blum, et al. Proc. of the  

    IEEE Radar Conference, 2004: 71-78. 

 [2] Li Jian, P. Stoica, Xu Luzhou, et al. IEEE Signal  

    Processing Letters, 14(12), 968 (2007). 

 [3] B. Friedlander, IEEE Trans. on Signal Processing,  

    57(1), 394 (2009). 

 [4] E. Grossi, M. Lops, L. Venturion, IEEE Trans. on  

    Signal Processing, 59(7), 3262 (2011).  

 [5] Frequency-Hopping Code Design for MIMO Radar  

    Estimation Using Sparse Modeling[J]. IEEE Trans.  

    on Signal Processing, 60(6), 3022 (2012).   

 [6] Chen Yifan et al. IEEE Trans. on Aerospace and  

    Electronics Systems. 49(2), 1374 (2013). 

 [7] D. Hai, IEEE Signal Processing Letters, 11(2), 179  

    (2004). 

 [8] Jin Ming, Liao Guisheng, Li Jun, Systems  

    Engineering and Electronics, 32(1), 14 (2010). 

 [9] Liu Bo, He Zishu, Journal of electronic measurement  

    and instrument, 22(2), 62 (2008). 

[10] Li Jian, P. Stoica, X. Zheng, IEEE Trans. on Signal  

    Processing, 56(8), 3959 (2008). 

[11] P. Stoica, Li Jian, X. Zhu, IEEE Trans. on Signal  

    Processing, 56(6), 2593 (2008). 

[12] Liu Bo, Doctoral Dissertation of University of  

    Electronic Science and Technology of China, 2008. 

[13] Lei Xu, Qilian Liang, IEEE Trans. On Aerospace and  

    Electronic Systems 48(3), 2100 (2012).  

[14] P. Z. Fan, M. Darnell, IEE  

    Proceedings-Communications, 144(6), 361 (1997). 

[15] Hu Liangbing, Liu Hongwei, Wu Shunjun, Systems  

    Engineering and Electronics, 33(1) 64 (2011). 

[16] Sun Ying, Zishu He, Hongming Liu, Li Jun,  

    Optoelectron. Adv. Mater.-Rapid Comm. 5(8), 863  

    (2011). 

 

___________________ 
*Corresponding author: baobaoshu126@126.com 

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6237581&contentType=Journals+%26+Magazines&refinements%3D4291944246%26sortType%3Ddesc_p_Publication_Year%26searchField%3DSearch_All%26queryText%3DMIMO+RADAR+WAVEFORM+DESIGN

